Application of Bernstein Expansion to the Solution of Control Problems
نویسنده
چکیده
We survey some recent applications of Bernstein expansion to robust stability, viz. checking robust Hurwitz and Schur stability of polynomials with polynomial parameter dependency by testing determinantal criteria and by inspection of the value set. Then we show how Bernstein expansion can be used to solve systems of strict polynomial inequalities.
منابع مشابه
Solution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions
This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method. The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions. By substituting these estimated functions into the cost functional, an unconstrained nonlinear optimizat...
متن کاملThe Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملNumerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices
In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reliable Computing
دوره 6 شماره
صفحات -
تاریخ انتشار 2000